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Studies of nematic-isotropic transition for a Gay-Berne fluid 
using the second virial approximation 
by VALERIY V. GINZBURG*, MATTHEW A. GLASER and 

NOEL A. CLARK 
Condensed Matter Laboratory, Department of Physics, University of Colorado, 

Boulder, CO 80309-0390, U.S.A. 

(Received 20 December 1995; accepted 19 March 1996) 

In this paper we use the second virial approximation to study the nematic-isotropic (N-I) 
transition for a Gay-Berne liquid for a broad range of parameters. For Gay-Berne hard 
Gaussian overlap (HGO) fluid particles we found that a N-I transition exists as a function 
of density for all length to breadth ratios ti > 4, in reasonable agreement with other theoretical 
studies and results of Monte Carlo simulations. For the full Gay-Berne potential (GB) the 
location of the N-I transition as a function of density for different temperatures was studied 
for several values of shape and energy anisotropy parameters K and ti’. It was shown that the 
transition temperature increases or the transition density decreases with increasing ti and/or 
decreasing IC’. Wherever the molecular dynamics (MD) or Monte Carlo (MC) data were 
available, comparison was made. For each system, coexistence density and pressure were 
calculated, and, wherever possible, also compared with MC or MD data to show qualitative 
agreement. The reported study is considered to be a first step in the calculation of N-I 
transition for rigid liquid crystal (LC) molecules. 

1. Introduction 
In recent years, significant progress has been achieved 

in the modelling of orientational ordering in liquid 
crystals. Of particular interest was the role of different 
types of intermolecular interactions in the formation of 
ordered phases. Both the long-range attractive and short- 
range repulsive forces are important in the process of 
orientational ordering, and theories of nematic ordering 
based on either type of interaction have existed for a 
long time. After the pioneering work of Maier and Saupe 
[ 11 (theoretical description of nematic-isotropic trans- 
ition due to attractive orienting intermolecular potential) 
and of Onsager [2] (theoretical model of athermal 
nematic-isotropic transition due to steric excluded- 
volume effects), many successful attempts were made to 
simulate these systems and verify predictions of both 
theories. The role of attractive potential has been investi- 
gated, e.g. in a Lebwohl-Lasher lattice model [3]. 
Athermal excluded-volume interactions were studied in 
several simulations of hard body molecules (ellipsoids of 
revolution, spherocylinders) by Frenkel and co-workers 
[4, 51. It was shown that steric interactions may result 
in not only nematic ordering, but sometimes in formation 
(at higher densities) of smectic or crystal phases. In 
particular, hard spherocylinders can form isotropic, nem- 

*Author for correspondence. 

atic, smectic A and crystal phases, while, e.g. elongated 
hard ellipsoids of revolution have isotropic, nematic and 
crystal phases (no smectics). However, the question of 
relative importance of these two types of interaction 
(steric hard-core repulsion and orienting attraction) 
was unresolved and required a simple model correctly 
including both features. 

Such analysis became possible after Berne et al. [6] 
introduced an orientation-dependent analogue of the 
standard Lennard-Jones (LJ) intermolecular potential. 
Like LJ, the Gay-Berne potential includes both long- 
range attractive and short-range repulsive parts; how- 
ever, its parameters strongly depend upon the relative 
orientation of interacting molecules. The Gay-Berne 
(GB) potential has the same symmetry as ellipsoids of 
revolution; thus, the difference between the phase behavi- 
our of the GB-system and that of hard ellipsoids has to 
be ascribed to the attractive part of the potential. That 
is why the GB model is now widely used to model phase 
behaviour of liquid crystals. 

In their study of the GB system using Monte Carlo 
and NVT (constant particle number, volume and temper- 
ature) molecular dynamics, de Miguel et al. [ 7, 81 found 
several mesophases, including isotropic, nematic, smectic 
(or hexatic) B, tilted smectic B. Luckhurst et al. [9] 
analysed a slightly modified GB potential using the same 
method to find isotropic, nematic, smectic A and crystal 
phases. The system of GB hard ellipsoids (precise defini- 
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266 V. V.  Ginzburg et d. 

tion of this will be given later in the text) and truncated 
GB potential with only a repulsive part were also studicd 
using the same MD technique. De Miguel et nl. found 
[S] that such systems do not exhibit any smectic phases, 
in agreement with the symmetry argument due to 
Frenkel that such smectic phases would be impossible, 
since hard ellipsoids can be transformed to hard spheres 
by a c n e  compression. 

Some theoretical attempts were made recently to 
calculate the GB phase diagram using a density func- 
tional approach and perturbation methods. Velasco et al. 
[ lo]  applied a perturbation scheme with the hard 
Gaussian ovcrlap (HGO) model as a reference. to calcu- 
late phase coexistence in a full GB system. The improve- 
ment in  determining the N-I transition densities and 
coexistence region, however. was not very significant in 
comparison with the Onsager mean-field approximation. 

In spite of all the success of numerical studies of the 
GB system, there has been, to our knowledge, no systein- 
atic attempt to study the influence of the shape and 
energy anisotropy on the N-l transition temperatures 
and pressures. Although the GB potential allows one 
uniquely to explore this dependence, the full investi- 
gation of the phase diagram in the complete parameter 
space using any of the aforementioned methods would 
require very large computational effort. O n  the other 
hand, it should be interesting and important to visualize 
qualitative dependence of transition parameters on the 
interaction anisotropies, since it could be applied to 
understand, for example, dependence of transition 
temperature on molecular length in homologous series. 

In order to analyse such qualitative trends and 
dependencies, we employ the second virial (also known 
as Onsager) approximation. While this approximation 
oversimplifies intermolecular correlations and is known 
to break down at low temperatures and/or high densities, 
it is very easy to carry out and very computationally 
inexpensive. By applying it to a set of GB fluids with 
different shape and energy anisotropies, it is possible 
to obtain the N-I transition temperature (at a given 
pressure) or coexistence pressure and densities (at a 
given temperature) as functions of both anisotropies. 
Comparison of the results obtained with the known data 
from MC and MD simulations would then suggest ways 
of systematically improving the theory. 

In this paper wc report the calculated phase diagram 
of the Gay-Berne system using the second virial approxi- 
mation. We calculate coexistence pressures and densities 
for a number of parameters to analyse how the change 
in either shape or energy anisotropy affects the phase 
diagram. Whenever possible, we compare the phase 
diagrams obtained with MC or MD results. 

Our paper is organized as follows. In 9 2, we describe 
the second virial approximation and introduce distribu- 

tion functions, order parameters and thermodynamic 
variables. $ 3  contains the description of the GB potential 
as used in our calculations, and other specific details o f  
the calculation. In $4, results of the calculation are 
summarized and phase diagrams for several values of 
GB potential parameters are shown. Finally, $ 5 contains 
brief conclusions and suggestions for future applications. 

2. Second virial approximation 
Let us assume that particles in the fluid are cylindric- 

ally symmetric (they could have ellipsoidal. sphero- 
cylindrical or cylindrical shape). i.e. belong to D,,, 
symmetry group and can freely rotate about the long 
axis. In this case, orientation of a given molccule is 
determined by its two Euler angles, the polar angle tl 
and the azimuthal angle cp. 

We introduce the single-particlc distribution function 
y ( Q )  (note that is a function of H only and does not 
depend on ‘p for symmetry reasons) and the pair correla- 
tion function g( 1,2) = g(H,, ‘p,, H,, rp,, rI2), where rI2 is a 
vector connecting centres of molecules 1 and 2. In the 
second virial approximation, the Helmholtz free energy 
of a spatially uniform phase (nematic or isotropic) is 
given by: 

F = y Vk,  T d!+)(Q) In [ 4 n N 2  )I j. 
+ 2 p’Vk,T / s / d Q l  dQ,d3rl2y(~,)?(Q2,)y( l ,2)  

x In id 1,2) exp CB@( 1,2)11, ( 1 )  

where i2 = ( 0 , ~ ) :  p is the number density, V is the 
volume, T is the temperature, k ,  is Boltzmann’s constant, 
P=(l /k ,T) ,  and @(1,2)= @(QI.Q2,rl2). 

Minimization of equation ( 1 )  with respect to g and ; I  

subject to the constraint dQy(Q) = 1, yields the follow- 
ing self-consistency equations: 

(20 )  

d ~ 2 , d 3 r 1 2 ~ ( f ~ 2 ) [ g ( 1 , 2 ) -  11, ( 2 h )  

g( 192) = exp c- P@( 1 7  2)1, 

dQy(Q) = 1, s ( 2 c )  

where C is a normalization constant whose value is 
determined from equation (2 c). 

In  order to simplify the calculation, we seek the 
solution of equations ( 2 a ~  c) among the functions of a 
specific form: 

( 3 )  

where A and .;I are parameters characterizing the dcgree 
of ordering. and Y2* is a second spherical harmonic 

?(a) = A exp [aY,,(H, cp)]. 
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N-I transition studies for a Gay-Berne fluid 

function defined as: 

The functional form (3) stems from the spherical har- 
monic expansion of In(?)) and the requirement that j? is 
independent of tp and even in cos9. In this case, we can 
truncate the expansion after thc first non-constant term 
to obtain ( 3 ) .  Our calculations showed that including 
the second and third terms in the expansion does not 
significantly change the results, so the simplest form ( 3 )  
was used. 

After substituting (3) into (2), we obtain equations 
for A and o! that should be solved iteratively. It is easy 
to show that the isotropic phase (a = 0, A = 1/4n) is 
always a solution; at high enough densities and/or low 
enough temperatures, another solution with non-zero o! 

(nematic) may exist and correspond to a state with lower 
pressure and free energy. The second virial approxi- 
mation allows us to calculate the coexistence pressure, 
coexistence densities, and the jump of the nematic order 
parameter at the transition, for each temperature. 

The nematic order parameter S and pressure P are 
given by: 

( 5 )  

y(Q1h?(Q2)f(172), ( 6 )  

where f (  I, 2) = exp [- p@( 1,2)] - 1 is the Mayer 
function. 

3. Intermolecular potential and details of calculation 
As we noted in $1, the GB potential is one of the 

most widely used for description of phase behaviour of 
thermotropic liquid crystals due to its relative simplicity 
and ability to vary the relative strengths of steric repul- 
sion and anisotropic attraction. The most common form 
for the G B  potential is: 

( 7 )  

where r = Ir, - r21, r = (rl - r2)/r is a unit vector along 
the line connecting the centres of masses of molecules 1 
and 2, u, is a unit vector along the symmetry axis of the 
ith molecule; o(r7 ul, u,) and c(r7 ul,  u2) are orientation- 

dependent Lennard-Jones parameters, given by: 

+ (r * (ul - u2))’]}-’-’ 
1 - xu, * u2 

, 

c(r, u,, u2) = e0 [ 1 - x2(ul - u ~ ) ~ ]  

267 

(8) 

(9) 

x = (K - l ) / ( ~  + l), x’ = (dl’* - 1)/(d1l2 + l), where K is 
the length-to-breadth ratio (shape anisotropy), and K’ is 
the ratio of the potential well depths for the side-by-side 
and end-to-end configurations (energy anisotropy). 

Exponents m and n are: m = 1, n = 2 in the original 
Gay-Berne work [6] and in the simulations of de 
Miguel et al. [7, 81, and m = 2, n = 1 in the simulations 
of Luckhurst et al. [9]. (According to Luckhurst, this 
modification of potential makes side-by-side configura- 
tion relatively more advantageous in comparison with 
some intermediate positions and thus stimulates smectic 
ordering). In our work, original exponents m = 1, n = 2 
were used, although trial calculations were performed 
with Luckhurst’s exponents to find out that there were 
no qualitative differences between phase diagrams for 
these cases. 

We also analysed the Gay-Berne HGO fluid (or Gay- 
Berne hard ellipsoids), in which: 

U = co, 

li = 0, 

r < o(r,u1,u2), 

r Z a(r, ul,  u2), 

where a(r,ul,u2) is given by (8). The properties of 
this system should be similar to those of hard ellip- 
soids, although some differences could lead to the 
difference in phase behaviour for relatively small 
length-to-breadth ratios. 

For the case of the Gay-Berne potential, phase dia- 
grams were calculated for length-to-breadth ratios K = 
3,3.25,3.5,3.75,4,45,5,5-5,6, and for energy aniso- 
tropies K’ = 5,10,20,40; for HGO hard particles, the 
same length-to-breadth ratios were studied. For the case 
of Gay-Berne, a cut-off radius Rc = 6 ~ ~ 0  was used. 

Integration of the right-hand side of equations ( 2 b )  
and (6) is performed using the repeated trapezoidal rule. 
Due to the cylindrical symmetry, the number of variables 
over which integration is done, is reduced by one. We 
used the following number of mesh-points: 4 for q 
(azimuthal angle), 8 for 0 (polar angle), 20 for rl 
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268 V. V. Ginzburg et a1 

(perpendicular component of r) and 24 for r, ,  (parallel 
component of r). 

When solving equations (2 b,c) with parametrization 
(3), an iterative procedure was used, with convergence 
criterion ~ x , , - a , ~ - ~ ~  <0-01. 

For each temperature in the case of regular GB, or at 
temperature 1-0 in the case of HCO hard particles, 
calculation is done for 25 densities between 0.01 and 0.5 
with a step of 0.02 (all densities are measured in units 
of o i 3 ,  and all temperatures are measured in units of E ~ ) .  

4. Results and discussion 
4.1. HGO hard particles 

For HGO hard particles, an N-I transition was found 
for length-to-breadth ratios larger than 3.75. For 
K < 3.75, no transition was observed, indicating that 
there is no stable nematic phase in this region. This 
result agrees approximately with Monte Carlo data for 
hard spherocylinders (where the N-I transition is 
observed for K > 4) and hard ellipsoids, where ti should 
be larger than 3 for transition to take place (see, e.g. 
[Ill]). In figure 1, a phase diagram for HGO hard 
particles is shown, with coexistence densities determined 
using the Maxwell rule. It is difficult to compare exactly 
the HGO model with either of the two other hard 
particle models (spherocylinders or hard ellipsoids) since 
parameter K (shape anisotropy) has a different definition 
in each model. However, it is possible to state qualitat- 
ively that, as expected from the second virial model, the 
calculated coexistence regions are significantly broader 
than the simulated ones. In figure 2, the coexistence 
pressure is plotted as a function of the length-to-breadth 
ratio. It can be seen that coexistence pressure decreases 
with increasing i i ,  as expected. 

0 4 0 - 1  I I I I I I I I I ,  I I I I '  I I I 

0 1 ' 1  I ' ~ 1 ~ ~ 1 1 ~ ~ ~ 1 ' ' ' '  
4.0 4.5 5.0 5.5 6.0 

KAPPA 

Figure I.  Coexistence densities of the HGO system in the 
second virial approximation as functions of shape aniso- 
tropy K. N denotes nematic phase, I isotropic phase; the 
coexistence region is shaded. 

0.8 
w a: 
3 

W 
U 
a > 0.4 
t- 
W 

0 6  

m 
0.2 

0 
4 0  4.5 5 0  5 5  6 0  

KAPPA 

Figure 2. Transition pressure BE', where /3 = ljk,T, as a lunc- 
tion of shape anisotropy K for HGO system. N denotes 
nematic phase, I isotropic phase. 

4.2. GB ,fluid 
For the GB system, the attractive part of the potential 

makes orientational ordering easier than in HGO. It is 
though hard to judge a priori whether the energy aniso- 
tropy helps or hinders the orientational ordering, so onc 
of the first priorities was to see how the transition 
temperatures and/or densities depend on ii' for the fixed 
K .  In figure 3, the coexistence densities are shown for the 
GB system with K = 3, at temperature T = 2.0, for several 
values of K ' .  It is seen clearly that increase in energy 
anisotropy hinders, rather than helps, orientational 
ordering, albeit very slightly. In figure 4, coexistencc 
pressures are shown for the same set of parameters. 
Again, a small but noticcable increase in coexistence 
pressure can be seen with increasing energy anisotropy. 
In figure 5,  we analyse the dependence of transition 

0 40 

0 30 

>- 
!= 

w 
g? 0 2 0  

U 

i 0.10 

0 
0 10 20 30 40 

KAPPA' 

Figure 3. Coexistence densities of the G B  system as functions 
of energy anisotropy K' in the second virial approximation. 
Shape anisotropy ~ = 3 .  N denotes nematic phase, I 
isotropic phase; the coexistence region is shaded. 
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W 

0.8 

0.4 
m 

-I 

KAPPA' 

Figure 4. Transition pressure ,W, where /3 = l/k,T, as a func- 
tion of energy anisotropy ti' in the second virial approxi- 
mation. Shape anisotropy ti = 3. N denotes nematic phase, 
I isotropic phase. 

w 0.6 
cc 
-I 
(0 
v) 
W a 0 .4  e 
P 
w 
m 0.2 

3.0 3.5 4.0 4.5 5.0 
KAPPA 

Figure 6. Transition pressure BP, where B = l/k,T, as a func- 
tion of shape anisotropy ti in the second virial approxi- 
mation. Energy anisotropy IC' = 5 .  N denotes nematic 
phase, I isotropic phase. 

0 
0 3.5 4.0 4.5 5.0 

KAPPA 

Figure 5. Coexistence densities of the GB system as functions 
of shape anisotropy ti in the second virial approximation. 
Energy anisotropy ti'= 5. N denotes nematic phase, I 
isotropic phase; the coexistence region is shaded. 

density on shape anisotropy. At T = 2.0, K' = 5, coexist- 
ence densities are shown for several different values of 
K .  As in the case of hard particles, coexistence densities 
drop when shape anisotropy increases. In figure 6, coex- 
istence pressures are plotted for the same set of para- 
meters, showing a decrease in coexistence pressure with 
an increasing shape aniostropy. 

In order to compare the results produced by the 
second virial approximation with the results of Monte 
Carlo or molecular dynamics studies, we analysed in 
detail the behaviour of the system with K = 3, K' = 5. 
The temperature dependence of N-I transition for this 
system is shown in figure 7, compared with that calcu- 
lated by de Miguel et u1. [ 7 ,8 ]  (our calculation results- 
solid lines, de Miguel's results-dashed lines). It can be 
seen again that the second virial approximation produces 

0 
0 0.20 0.30 0.40 

DENSITY 

Figure 7. Phase diagram for the GB system with ti = 3, ti' = 
5. Solid lines are for the coexistence densities in the second 
virial approximation, dashed lines are the Monte Carlo 
results from [8]. N, (N), I, (I)  denote nematic and 
isotropic phases, respectively, in the SVA and in the MC. 

a significantly broader coexistence region; it also predicts 
that the nematic phase becomes stable at T =  1-4, while 
the MC result for this value is 0.8. However, the results 
of the second virial approximation have to be treated 
with caution at low temperatures, because it does not 
take into account other ordered phases (smectics and 
crystals). 

In figure 8, the coexistence pressure PP is plotted as 
a function of temperature, compared with the MC 
simulations of de Miguel et al. It can be seen that second 
virial approximation underestimates transition pressure 
for this system very strongly; this can be ascribed to the 
fact that in the second virial theories, effects of steric 
repulsion, significant at high densities, are not correctly 
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O ~ . ' " l ' l l ' ' l ~  I ' / I ' l l I 1 l ' I  1 1 1  1 ~ L ' ' ' ~ ~ ~ ~ ~ 4  
0 1 2 3 4 

PEMPERATU R E  

Figure 8. Transition pressure BE', where p = l /k,T, as a func- 
tion of temperature, for the system ii = 3, K' = 5. The solid 
line corresponds to the pressures calculated using the 
second virial approximation; the dashed line represents 
the Monte Carlo data from [S]. N. (N), 1: (I)  denotc 
nematic and isotropic phases. respectively, in the SVA and 
i n  the MC. 

accounted for. One would expect that the discrepancy 
should be smaller if a transition is to occur at smaller 
densities, but it is difficult to verify due to the lack of 
computational data for other parts of the parameter 
space. 

In order to summarize the calculation results for 
different shape and encrgy anisotropies, in figure 9 the 
three-dimensional surface plots of transition pressures 
at temperatures (a) 1.6, (b)  2.0; and (c) 2.4 are shown for 
different values of ti and K'. This graphically illustrates 
the trends already discussed. i.e. that coexistence pres- 
sures and densities increase with the increase in shape 
anisotropy and decrease with the increase in energy 
anisotropy. In figure 10, three-dimensional plots of trans- 
ition temperatures are made for a fixed coexistence 
pressure of 1.0. 

The surface plots of figures 9 and 10 represent different 
cross-sections of the full phase diagram for a regular 
Gay-Berne potential. At present only very few points 
on this phase diagram have been studied using MC or 
MD: the already mentioned work by de Miguel et a/. 
[7.  S] for K = 3, K' = 5, and the study of a point K = 4.4, 
d = 4 0  by Luckhurst and Simmonds [ l Z ]  (the direct 
comparison with the latter work is difficult because 
simulations were performed at a fixed density of 0.16, 
rather than at fixed pressure, and because the different 
exponents p =0.8 and v = 0.74 were used). It can be 
seen that attractive interaction obviously decreases the 
nematic-isotropic transition temperature for a fixed 
density or pressure, and, in some instances, allows the 
formation of a nematic phase in a region where the 

0.8r 

1 

1 2  
w 5 1 0  

g 0 8  
01 

111 

4 
p 0 6  

m 
0 4  

0 2  

0 
4 0  

(c) 

Figure 9. Three-dimensional plot of transition pressure [{P, 
where f i  = l/k,?', as a function of ri and ri' for (a )  T =  1.6 
(b) T =  2.0, and (0 T =  2.4. 

HGO system does not exhibit any transition at all (e.g. 
l< = 3) .  

5. Conclusions 
We calculated the phase behaviour of GB HGO and 

GB particles over a broad range or shape and energy 
anisotropies using the  second virial (Onsagcr) approxi- 
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Figure 10. Three-dimensional plot of transition temperature 
T,, as a function of K and K’ at pressure I-’ = 1.0. 

mation. Coexistence temperatures and pressures for the 
nematic-isotropic transition were calculated at a large 
number of points in Gay-Berne parameter space, enab- 
ling us to visualize the dependencies of these character- 
istics on various anisotropies of the potential. The 
obtained results, as always with second virial-type calcu- 
lations, could be expected to yield significant errors for 
high densities and/or low temperatures. Unfortunately, 
absence of reliable Monte Carlo or molecular dynamic 
results for most regions in the Gay-Berne parameter 
space do not allow one to estimate these errors (with 
the exception of the point K = 3, K‘ = 5). 

It is shown that in the Gay-Berne model, the increase 
in shape anisotropy and/or the decrease in energy aniso- 
tropy increases the N-I transition temperature at fixed 
density or pressure. While the first part of this conclusion 
is well-known (longer rods align at lower densities even 
without attractive interaction), the second part is not 
that obvious and depends on the specifics of the potential 
and the way energy anisotropy is varied. Since the 
energy parameter E~ is kept constant, the depth of the 
‘side-by-side’ potential well remains the same, but depths 
of the ‘end-to-end’ and all the intermediate wells decrease 
with the increase in energy anisotropy and vice versa. 
This effect makes the nematic phase less favourable for 
the large K‘. Moreover, since the increase in energy 
anisotropy favours the ‘side-by-side’ ordering, one 
could argue that at some large enough K‘ the nematic 
phase would shrink completely, leading to a direct 
isotropic -smectic A transition. 

The calculated phase diagram does not take into 
account the possible formation of smectic or crystal 
phases. It is possible, therefore, that in some cases, the 
nematic phase obtained could turn out to be metastable, 
and a direct isotropic-smectic A, isotropic-hexatic B, or 
isotropic -crystal transition would take place instead. In 

view of the previous discussion, it is highly likely to 
expect such a phase diagram for systems with high 
energy anisotropies. However, the lack of computational 
data again makes the discussion of these possibilities 
difficult. 

The improvement upon the second virial approxi- 
mation could be achieved using either integral equation 
(e.g. Percus-Yevick or hypernetted chain approxi- 
mations) or density functional methods. Even though in 
recent years, these methods were applied with a varying 
degree of success to isotropic and nematic phases of GB 
fluid, the understanding of more ordered phases is not 
yet achieved. 

Apart from academic inte;est, calculation of phase 
diagrams for Gay-Berne potential could have a practical 
significance in the light of recent attempts to parametrize 
intermolecular potentials for relatively rigid liquid crys- 
talline mesogens using a regular or biaxial Gay-Berne 
potential [ 12, 13). If this approach proves to be useful, 
experimental data for the observed nematic-isotropic 
transition temperatures could be used to analyse the 
calculated GB phase diagram and vice versa. 
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